Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Chemphyschem ; : e202300709, 2024 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-38548684

RESUMO

X-ray photoelectron spectroscopy was employed to reveal the differences in the chemical structure of the topmost layer after plasma modification. It was found out that changes in the surface properties of the polymer could be observed even after 20 seconds of treatment. The surface becomes hydrophobic or superhydrophobic, with the water contact angles up to 160 degrees. Morphological changes and increased roughness can be observed only in the nanoscale, whereas the structure seems to be unaffected in the microscale. As a result of plasma modification a permanent hydrophobic effect was obtained on the polyoxymethylene surface.

2.
Micromachines (Basel) ; 14(9)2023 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-37763844

RESUMO

ZrO2-toughened Al2O3 (ZTA) ceramic composites with a porosity gradient and with improved mechanical properties have a wide range of possible applications. We fabricated nanofibrous and nanogranular Y-ZTA and Ce-ZTA composites with a gradient microstructure by creating a temperature gradient during SPS sintering, with the use of asymmetric graphite tool arrangement (ASY). In this study, we examined the morphology effect of the starting materials on the sintering process and on the final microstructure, as well as the mechanical properties of the composites. A large temperature difference was established for both the granular and fibrous samples fabricated in the ASY configuration, which resulted in gradient porosity along the ceramics bodies: the upper part of the ceramics showed a highly porous fine microstructure, while the opposite side was highly densified. The final microstructure of the composites can be tailored by varying the morphology of the starting ceramics or the graphite configuration. A highly porous skeleton-like structure was formed by sintering fibres in the ASY configuration, whereas the granular precursors resulted in a much less porous composite. The microstructure affected the mechanical properties of the composite. Improved hardness and more than 50% higher compression strength were obtained for the granular Ce-ZTA samples as compared to the fibrous sample. Gradient porosity with fibrous or granular morphology promotes the penetration of bioactive nanosized hydroxyapatite (HAp) into the pore structure. Fibrous ZTA absorbs HAp more effectively due to its higher porosity as well as its bimodal pore structure.

3.
Enzyme Microb Technol ; 163: 110168, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36481541

RESUMO

Glycerol is an important starting material for the synthesis of many chemical compounds and its selective oxidation represents an efficient way to produce value-added compounds. Glyceric acid, one of these selective oxidation products, is an important intermediate in the food, medicine, cosmetics, and light industries. In this work, four commercially available native laccases were screened for glycerol oxidation using different initiators, and the two most efficient biocatalysts were covalently immobilized on functionalized magnetic and polymethacrylate (Lifetech™) solid supports. Apart from the mostly employed Fe3O4 magnetic particles, in this work Ni-Zn or Ni-Zn-Co spinel ferrite (MFe2O4) microparticles were used. Particularly, the utilization (for the first time for laccase immobilization) of Ni-Zn ferrite support Ni0.7Zn0.3Fe2O4 functionalized with 3-aminopropyl-trimethoxysilane, via crosslinking by glutaraldehyde and reduction with NaBH4 led to excellent biocatalytic efficiency and stability. These results confirm the feasibility of Trametes versicolor laccase for covalent bonding, as presumed by computational modelling. The resulted enzymatic preparations were characterized in detail in terms of stability and reusability, demonstrating enhanced storage, pH and thermal stability compared to the native enzymes. The most active biocatalysts (790.93 [U/g]) were successfully used for glycerol oxidation and the specific conversion in glyceric acid exceeded 50%.


Assuntos
Lacase , Trametes , Lacase/química , Glicerol , Enzimas Imobilizadas/química , Concentração de Íons de Hidrogênio
4.
Nanomaterials (Basel) ; 12(23)2022 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-36500787

RESUMO

This paper investigated a synthesis process for highly porous Al2O3, Y-ZTA, and Ce-ZTA ceramic nanocomposites with gradient microstructure and improved mechanical properties. Ceramic nanofibres were synthesized as the starting material. The gradient microstructure was developed during spark plasma sintering using an asymmetric graphite arrangement that generated significant temperature differences (80-100 °C) between the opposite sides of the samples. Structural and mechanical properties of the fibrous ceramic composites were investigated. The effect of the temperature gradient on properties was also discussed. While the asymmetric configuration resulted in a gradient porosity, reference samples fabricated in standard graphite configuration were uniformly porous. The gradient structure and the ZrO2 addition led to improved hardness and compression strength of the sintered samples. However, the opposite sides of the samples exhibited considerable variations in both microstructure and in terms of properties. The upper part of the Ce-ZTA ceramic showed a highly porous structure with 18.2 GPa hardness, while the opposite side was highly densified with 23.0 GPa hardness. Compressive strength was 46.1 MPa and 52.1 MPa for Y-ZTA and Ce-ZTA sintered at 1300 °C, respectively, despite their high porosity. The research provided a promising approach to prepare highly porous ZTA composites with high strength for a wide range of applications.

5.
Pharmaceutics ; 14(11)2022 Oct 29.
Artigo em Inglês | MEDLINE | ID: mdl-36365150

RESUMO

Metronidazole (MTZ) is a widely used drug, but due to its many side effects, there is a growing trend today to use a minimum dose while maintaining high efficacy. One way to meet this demand is to reduce the size of the drug particles. A relatively new method of size reduction is attaching the drug molecules to a mesoporous carrier. In this paper, we studied the fixation of MTZ molecules on mesoporous silica carriers. The drug was immobilized on two mesoporous silica materials (Syloid, SBA-15) with the use of a variety of immersion techniques and solvents. The immobilized drug was subjected to physicochemical examinations (e.g., SEM, XPS, XRD, nitrogen uptake, DSC) and dissolution studies. A significantly higher immobilization was attained on SBA-15 than on a Syloid carrier. Among the processing parameters, the type of MTZ solvent had the highest influence on immobilization. Ultrasonic agitation had a lower but still significant impact, while the concentration of MTZ in the solution made no difference. Under optimal conditions, with the application of an ethyl acetate solution, the surface coverage on SBA-15 reached as much as 91%. The immobilized MTZ exhibited a ca. 10% faster dissolution rate as compared to the pure micron-sized drug particles.

6.
Materials (Basel) ; 15(5)2022 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-35269091

RESUMO

We studied the fabrication of functionally graded Al2O3-CeO2-stabilized-ZrO2 (CTZ) ceramics by spark plasma sintering. The ceramic composite exhibits a gradual change in terms of composition and porosity in the axial direction. The composition gradient was created by layering starting powders with different Al2O3 to CTZ ratios, whereas the porosity gradient was established with a large temperature difference, which was induced by an asymmetric graphite tool configuration during sintering. SEM investigations confirmed the development of a porosity gradient from the top toward the bottom side of the Al2O3-CTZ ceramic and the relative pore volume distributed in a wide range from 0.02 to 100 µm for the samples sintered in asymmetric configuration (ASY), while for the reference samples (STD), the size of pores was limited in the nanometer scale. The microhardness test exhibited a gradual change along the axis of the ASY samples, reaching 10 GPa difference between the two opposite sides of the Al2O3-CTZ ceramics without any sign of delamination or cracks between the layers. The flexural strength of the samples for both series showed an increasing tendency with higher sintering temperatures. However, the ASY samples achieved higher strength due to their lower total porosity and the newly formed elongated CeAl11O18 particles.

7.
Materials (Basel) ; 12(4)2019 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-30813237

RESUMO

The surfaces of two engineering polymers including polyamide 66 (PA66) and polytetrafluoroethylene (PTFE) were treated by diffuse coplanar surface barrier discharges in atmospheric air. We found that plasma treatment improved the adhesion of PA66 for either polymer/polymer or polymer/steel joints, however, it was selective for the investigated adhesive agents. For PTFE the adhesion was unaltered for plasma treatment regardless the type of used adhesive. Tribological properties were slightly improved for PA66, too. Both the friction coefficient and wear decreased. Significant changes, again, could not be detected for PTFE. The occurred variation in the adhesion and tribology was discussed on the basis of the occurred changes in surface chemistry, wettability and topography of the polymer surface.

8.
Polymers (Basel) ; 10(12)2018 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-30961304

RESUMO

A study is presented on cold plasma treatment of the surfaces of two engineering polymers, polyamide 6 (PA6) and polyoxymethylene (POM-C), by diffuse coplanar surface barrier discharges under atmospheric air conditions. We found that plasma treatment improved the adhesion of both polymers for either polymer/polymer or polymer/steel joints. However, the improved adhesion was selective for the investigated adhesive agents that were dissimilar for the two studied polymers. In addition, improvement was significantly higher for PA6 as compared to POM-C. The observed variation of the adhesion was discussed in terms of the changes in surface chemistry, wettability and topography of the polymer surface.

9.
J Am Chem Soc ; 132(39): 13627-9, 2010 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-20839778

RESUMO

The nonporous gold(I) diphosphine complex [Au(2)(cis-dppe)(2)](NO(3))(2) [1, cis-dppe = cis-1,2-bis(diphenylphosphino)ethylene] is robust enough to trap guests, but at the same time, it is flexible enough to allow guest release without destruction of its crystal lattice. This nonporous gold(I) compound 1 is also efficient at capturing and releasing carbon dioxide in a controlled manner.


Assuntos
Compostos Organoáuricos/química , Adsorção , Dióxido de Carbono/química , Cristalografia por Raios X , Modelos Moleculares , Tamanho da Partícula , Porosidade , Propriedades de Superfície
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA